Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677629

RESUMO

The use of Nigella seeds in the food, pharmaceutical, and cosmetic fields is common, since the iniquity and the virtues of these plants are directly related to their characteristic phytochemical composition. This investigation focused on the comparative study of the botanical aspect, phenolic profile, and in vitro and in vivo biological activities of Nigella sativa L. (NS) and Nigella damascena L. (ND) seeds. The macro- and micro-morphological properties of these seeds were studied, and the key dissimilarities between them were clearly illustrated. The phytochemical contents and phenolic profiles were determined, and the in vitro antioxidant activity was assessed using four methods. The in vivo antioxidant and biochemical parameters of the blood of supplemented mice were determined. The results of the macro- and micro-structure analysis revealed differences between the two plants. Here, ND is characterized by higher phytochemical contents and the best antioxidant activities. The HPLC analysis indicated the presence of nine compounds, namely seven phenolic acids, particularly hydroxybenzoic and caffeic acids, and two flavonoids. The administration of ND extract to mice for 21 days at a concentration of 500 mg/kg allowed a substantial amelioration of plasma antioxidant properties. In addition, the extracts ameliorate blood parameters (cholesterol, triglycerides, glycemia, and urea). Furthermore, the antimicrobial activity of extracts demonstrated their effects on Staphylococcus and Aspergillus. Nigella seeds, in particular ND, expressed considerable in vitro antioxidant properties and demonstrated significant amelioration of mice blood properties. Consequently, these species can serve as a valuable source of compounds with various applications.


Assuntos
Nigella damascena , Nigella sativa , Nigella , Camundongos , Animais , Nigella sativa/química , Antioxidantes/farmacologia , Antioxidantes/análise , Nigella/química , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/química , Sementes/química
2.
J Exp Bot ; 74(5): 1448-1459, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512646

RESUMO

MADS-box transcription factors are important regulators of floral organ identity through their binding to specific motifs, termed CArG, in the promoter of their target genes. Petal initiation and development depend on class A and B genes, but MADS-box genes of the APETALA3 (AP3) clade are key regulators of this process. In the early diverging eudicot Nigella damascena, an apetalous [T] morph is characterized by the lack of expression of the NdAP3-3 gene, with its expression being petal-specific in the wild-type [P] morph. All [T] morph plants are homozygous for an NdAP3-3 allele with a Miniature Inverted-repeat Transposable Element (MITE) insertion in the second intron of the gene. Here, we investigated to which extent the MITE insertion impairs regulation of the NdAP3-3 gene. We found that expression of NdAP3-3 is initiated in the [T] morph, but the MITE insertion prevents its positive self-maintenance by affecting the correct splicing of the mRNA. We also found specific CArG features in the promoter of the NdAP3-3 genes with petal-specific expression. However, they are not sufficient to drive expression only in petals of transgenic Arabidopsis, highlighting the existence of Nigella-specific cis/trans-acting factors in regulating AP3 paralogs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nigella damascena , Nigella damascena/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Arabidopsis/metabolismo , Flores , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
3.
Phytochemistry ; 198: 113165, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35339516

RESUMO

This review is a systematic scientific work on medicinal and traditional use, on the chemical composition of specialized metabolites, volatile and non-volatile, on aspects related to toxicology and phytotherapy of Nigella damascena L. The genus Nigella (Ranunculaceae) is distributed throughout the Mediterranean basin, extending to northern India, and has been divided into three sections. Nigella damanscena L. is traditionally used as an ingredient in food, for example, as flavouring agents in bread and cheese, but is also known in folk medicine, used to regulate menstruation; for catarrhal affections and amenorrhea; as a diuretic and sternutatory; as an analgesic, anti-oedematous, and antipyretic; and for vermifuge and its disinfectant effects. This paper reviews the most dated to the latest scientific research on this species, highlighting the single isolated metabolites and exploring their biological activity. Fifty-seven natural compounds have been isolated and characterised from the seeds, roots, and aerial parts of the plant. Among these constituents, alkaloids, flavonoids, diterpenes, triterpenes, and aromatic compounds are the main constituents. The isolated compounds and the various extracts obtained with solvents of different polarities presented a diverse spectrum of biological activities such as antibacterial, antifungal, antitumour, antioxidant, anti-inflammatory, antipyretic, anti-oedema, and antiviral activities. Various in vitro and in vivo tests have demonstrated the pharmacological potential of ß-elemene and alkaloid damascenin. Unfortunately, the largest number of biological studies on this species and its metabolites have been conducted in vitro; therefore, further investigation is necessary to evaluate the toxicological aspects and real mechanisms of action of crude extracts to confirm the therapeutic potential of N. damascena.


Assuntos
Antipiréticos , Nigella damascena , Etnobotânica , Etnofarmacologia , Medicina Tradicional , Nigella damascena/química , Compostos Fitoquímicos/química , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
Chem Biodivers ; 18(10): e2000936, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34432933

RESUMO

The antioxidant and mutagenic/antimutagenic activities of the fixed oils from Nigella sativa (NSO) and Nigella damascena (NDO) seeds, obtained by cold press-extraction from the cultivar samples, were comparatively investigated for the first time. The antimutagenicity test was carried out using classical and modified Ames tests. The fatty acid composition of the fixed oils was characterized by gas chromatography-mass spectrometry (GC-MS) while the quantification of thymoquinone in the fixed oils was determined by UPC2 . The main components of the NSO and NDO were found to be linoleic acid, oleic acid, and palmitic acid. The results of the Ames test confirmed the safety of NSO and NDO from the viewpoint of mutagenicity. The results of the three antioxidant test methods were correlated with each other, indicating NDO as having a superior antioxidant activity, when compared to the NSO. Both NSO and NDO exhibited a significant protective effect against the mutagenicity induced by aflatoxin B1 in Salmonella typhimurium TA98 and TA100 strains. When microsomal metabolism was terminated after metabolic activation of the mycotoxin, a significant increase in antimutagenic activity was observed, suggesting that the degradation of aflatoxin B1 epoxides by these oils may be a possible antimutagenic mechanism. It is worthy to note that this is the first study to assess the mutagenicity of NSO and NDO according to the OECD 471 guideline and to investigate antimutagenicity of NDO in comparison to NSO against aflatoxin.


Assuntos
Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Nigella damascena/química , Nigella sativa/química , Óleos de Plantas/farmacologia , Substâncias Protetoras/farmacologia , Aflatoxina B1/antagonistas & inibidores , Antimutagênicos/química , Antimutagênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Picratos/antagonistas & inibidores , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Salmonella typhimurium/química
5.
Nat Commun ; 11(1): 1777, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286317

RESUMO

Pseudonectaries, or false nectaries, the glistening structures that resemble nectaries or nectar droplets but do not secrete nectar, show considerable diversity and play important roles in plant-animal interactions. The morphological nature, optical features, molecular underpinnings and ecological functions of pseudonectaries, however, remain largely unclear. Here, we show that pseudonectaries of Nigella damascena (Ranunculaceae) are tiny, regional protrusions covered by tightly arranged, non-secretory polygonal epidermal cells with flat, smooth and reflective surface, and are clearly visible even under ultraviolet light and bee vision. We also show that genes associated with cell division, chloroplast development and wax formation are preferably expressed in pseudonectaries. Specifically, NidaYABBY5, an abaxial gene with ectopic expression in pseudonectaries, is indispensable for pseudonectary development: knockdown of it led to complete losses of pseudonectaries. Notably, when flowers without pseudonectaries were arrayed beside those with pseudonectaries, clear differences were observed in the visiting frequency, probing time and visiting behavior of pollinators (i.e., honey bees), suggesting that pseudonectaries serve as both visual attractants and nectar guides.


Assuntos
Flores/metabolismo , Nigella damascena/metabolismo , Divisão Celular/fisiologia , Ecologia , Flores/fisiologia , Nigella damascena/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Ranunculaceae/metabolismo , Ranunculaceae/fisiologia
6.
Food Chem Toxicol ; 125: 161-169, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30610933

RESUMO

Nigella damascena L belongs to Ranunculaceae family and is mentioned in Eastern traditional medicine for the treatment of high temperatures, regulation of menstruation or catarrhal affections. The anti-inflammatory activity of compounds present in the essential oil obtained from seeds of this plant can be found in literature, however no studies on immunomodulatory activity are provided. Hence, in this work anti-inflammatory activity of N. damascena seed essential oil as well as damascenine and main compound ß-elemene was evaluated on ex-vivo lipopolysaccharide (LPS)-stimulated human neutrophils. For isolation of damascenine fast and efficient protocol was elaborated using high performance countercurrent chromatography technique for the first time. Also detailed spectroscopic characteristic of damascenine was provided for the first time. Damascenine was separated from the essential oil in a mixture of petroleum ether/acetonitrile/acetone (2:1.5:0.5 v/v/v) in reversed phase mode in 12 min with 99.47% purity. Essential oil, damascenine and ß-elemene presented immunomodulatory activity evaluated in LPS-stimulated neutrophils ex vivo. All studied samples significantly inhibited release of interleukin 1 beta (IL-1ß) and interleukin 8 (IL-8). What is more, damascenine and ß-elemene decreased matrix metallopeptidase 9 (MMP-9) production similar to dexamethasone. The release of tumor necrosis factor (TNF-α) was also inhibited in all range of concentrations, however the activity was weaker then activity of dexametasone. The previously reported anti-inflammatory activity of damascenine and ß-elemene investigated in murine models was confirmed in our study on human neuthrophils suggesting their possible strong inhibitory effect on inflammatory response progression.


Assuntos
Neutrófilos/efeitos dos fármacos , Nigella damascena/química , Óleos Voláteis/farmacologia , Sesquiterpenos/farmacologia , ortoaminobenzoatos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Distribuição Contracorrente , Humanos , Neutrófilos/imunologia , Espectroscopia de Prótons por Ressonância Magnética
7.
Molecules ; 23(2)2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382097

RESUMO

The most commonly used plant source of ß-elemene is Curcuma wenyujin Y. H. Chen & C. Ling (syn. of Curcuma aromatic Salisb.) with its content in supercritical CO2 extract up to 27.83%. However, the other rich source of this compound is Nigella damascena L. essential oil, in which ß-elemene accounts for 47%. In this work, the effective protocol for preparative isolation of ß-elemene from a new source-N. damascena essential oil-using high performance counter-current chromatography HPCCC was elaborated. Furthermore, since sesquiterpens are known as potent antimicrobials, the need for finding new agents designed to combat multi-drug resistant strains was addressed and the purified target compound and the essential oil were tested for its activity against a panel of Gram-positive and Gram-negative bacteria, fungi, and mycobacterial strains. The application of the mixture of petroleum ether, acetonitrile, and acetone in the ratio 2:1.5:0.5 (v/v) in the reversed phase mode yielded ß-elemene with high purity in 70 min. The results obtained for antimicrobial assay clearly indicated that N. damascena essential oil and isolated ß-elemene exert action against Mycobacterium tuberculosis strain H37Ra.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nigella damascena/química , Óleos Voláteis/química , Sesquiterpenos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Sesquiterpenos/química , Sesquiterpenos/farmacologia
8.
J Nat Med ; 72(2): 439-447, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29288328

RESUMO

Nigella species are rich source of dolabellane diterpenes. During our study of Nigella species, new dolabellane diterpenes, damasterpenes V-VIII were isolated. The structural determination of new compounds damasterpenes V-VIII is described with consideration of their absolute configurations. The antiviral activities against herpes simplex virus type-1 of the isolated compounds and their derivatives are also evaluated. Damasterpene V (inhibition 35.0%) and 2-phenylacetyl 13-benzoyl damasterpenol (32.0%) showed significant antiviral activity at 10 µM.


Assuntos
Antivirais/uso terapêutico , Diterpenos/química , Herpesvirus Humano 1/efeitos dos fármacos , Nigella damascena/química , Sementes/química , Antivirais/farmacologia
9.
BMC Plant Biol ; 17(1): 153, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28899358

RESUMO

BACKGROUND: Most data concerning chromosome organization have been acquired from studies of a small number of model organisms, the majority of which are mammals. In plants with large genomes, the chromosomes are significantly larger than the animal chromosomes that have been studied to date, and it is possible that chromosome condensation in such plants was modified during evolution. Here, we analyzed chromosome condensation and decondensation processes in order to find structural mechanisms that allowed for an increase in chromosome size. RESULTS: We found that anaphase and telophase chromosomes of plants with large chromosomes (average 2C DNA content exceeded 0.8 pg per chromosome) contained chromatin-free cavities in their axial regions in contrast to well-characterized animal chromosomes, which have high chromatin density in the axial regions. Similar to animal chromosomes, two intermediates of chromatin folding were visible inside condensing (during prophase) and decondensing (during telophase) chromosomes of Nigella damascena: approximately 150 nm chromonemata and approximately 300 nm fibers. The spatial folding of the latter fibers occurs in a fundamentally different way than in animal chromosomes, which leads to the formation of chromosomes with axial chromatin-free cavities. CONCLUSION: Different compaction topology, but not the number of compaction levels, allowed for the evolution of increased chromosome size in plants.


Assuntos
Cromossomos de Plantas/ultraestrutura , Nigella damascena/genética , Nigella damascena/ultraestrutura , Cromatina/ultraestrutura , Montagem e Desmontagem da Cromatina , Estruturas Cromossômicas , Cromossomos de Plantas/fisiologia , DNA de Plantas , Tamanho do Genoma , Genoma de Planta , Mitose
10.
Molecules ; 20(6): 9560-74, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26016547

RESUMO

This study was performed to evaluate the phenolic profile, antioxidant and diuretic effects of black cumin and lady-in-a-mist seeds. In the phenolic profile, differences between the two species are significant. Qualitative and quantitative analyses of the phenolic compounds were performed using a HPLC-UV/MS method. Hyperoside was the only identified flavonoid glycoside (1.08 ± 0.01 µg∙g-1 dw plant material), in the N. damascena extract. Regarding the flavonol profile, kaempferol was identified before the hydrolysis, only in the N. sativa extract (6.06 ± 0.02 µg∙g-1 dw plant material) and quercetin only in N. damascena seeds (14.35 ± 0.02 µg∙g-1 dw plant material). The antioxidant potential of the two species was tested through several electron transfer assays, which indicated, excepting for the FRAP assay, N. damascena as exhibiting a higher free radical scavenging activity. The diuretic activity of the two extracts was tested using a rat-experimental model on acute diuresis. Administration of the ethanolic extract of N. sativa (100 mg∙kg-1) resulted in a significant increase in urine volume, although less than found with the reference drug; in addition N. damascena extract did not present a diuretic effect. In reference to the elimination of Na+, K+ and uric acid, the black cumin extract exhibited a higher natriuretic than kaluretic effect and a similar uricosuric effect with control and N. damascena. For N. damascena, the Na+/K+ ratio was sub unitary, but not due to an increasing of the kaluretic effect, but mostly to a decrease of Na+ excretion.


Assuntos
Antioxidantes/farmacologia , Diuréticos/farmacologia , Nigella damascena/química , Nigella sativa/química , Extratos Vegetais/farmacologia , Polifenóis/isolamento & purificação , Sementes/química , Animais , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Diuréticos/química , Flavonoides/isolamento & purificação , Quempferóis/isolamento & purificação , Masculino , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Potássio/urina , Quercetina/análogos & derivados , Quercetina/isolamento & purificação , Ratos , Ratos Wistar , Sódio/urina , Especificidade da Espécie , Ácido Úrico/urina
11.
Nat Plants ; 2: 15188, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27250746

RESUMO

Spiral flowers usually bear a variable number of organs, suggestive of the flexibility in structure. The mechanisms underlying the flexibility, however, remain unclear. Here we show that in Nigella damascena, a species with spiral flowers, different types of floral organs show different ranges of variation in number. We also show that the total number of organs per flower is largely dependent on the initial size of the floral meristem, whereas the respective numbers of different types of floral organs are determined by the functional domains of corresponding genetic programmes. By conducting extensive expression and functional studies, we further elucidate the genetic programmes that specify the identities of different types of floral organs. Notably, the AGL6-lineage member NdAGL6, rather than the AP1-lineage members NdFL1/2, is an A-function gene, whereas petaloidy of sepals is not controlled by AP3- or PI-lineage members. Moreover, owing to the formation of a regulatory network, some floral organ identity genes also regulate the boundaries between different types of floral organs. On the basis of these results, we propose that the floral organ identity determination programme is highly dynamic and shows considerable flexibility. Transitions from spiral to whorled flowers, therefore, may be explained by evolution of the mechanisms that reduce the flexibility.


Assuntos
Flores/anatomia & histologia , Flores/fisiologia , Nigella damascena/anatomia & histologia , Nigella damascena/fisiologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Nigella damascena/genética , Filogenia , Proteínas de Plantas/genética
12.
Plant J ; 76(2): 223-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23855996

RESUMO

Flower architecture mutants provide a unique opportunity to address the genetic origin of flower diversity. Here we study a naturally occurring floral dimorphism in Nigella damascena (Ranunculaceae), involving replacement of the petals by numerous sepal-like and chimeric sepal/stamen organs. We performed a comparative study of floral morphology and floral development, and characterized the expression of APETALA3 and PISTILLATA homologs in both morphs. Segregation analyses and gene silencing were used to determine the involvement of an APETALA3 paralog (NdAP3-3) in the floral dimorphism. We demonstrate that the complex floral dimorphism is controlled by a single locus, which perfectly co-segregates with the NdAP3-3 gene. This gene is not expressed in the apetalous morph and exhibits a particular expression dynamic during early floral development in the petalous morph. NdAP3-3 silencing in petalous plants perfectly phenocopies the apetalous morph. Our results show that NdAP3-3 is fully responsible for the complex N. damascena floral dimorphism, suggesting that it plays a role not only in petal identity but also in meristem patterning, possibly through regulation of perianth organ number and the perianth/stamen boundary.


Assuntos
Flores/anatomia & histologia , Proteínas de Domínio MADS/metabolismo , Meristema/crescimento & desenvolvimento , Nigella damascena/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Domínio MADS/genética , Meristema/genética , Microscopia Eletrônica de Varredura , Nigella damascena/crescimento & desenvolvimento , Proteínas de Plantas/genética
13.
Rev Med Chir Soc Med Nat Iasi ; 111(1): 285-9, 2007.
Artigo em Romano | MEDLINE | ID: mdl-17595883

RESUMO

UNLABELLED: Nigella damascena L. (Ranunculaceae) originates from Magreb's countries (Morocco, Algeria, Tunisia, Egypt) and from the Middle Orient (Syria). In these countries the seeds are venerated by all the Muslim people and thus they are quoted in the Koran for their therapeutic effects. MATERIALS AND METHODS: We evaluated the effects of different extracts isolated from Nigellae damascenae semen and Nigellae damascenae herba on three types of cells: THP1 cells (human monocytes which were used for evaluating the toxicity of the extracts) and two different forms of Leishmania infatum: promastigote cells and amastigote cells. RESULTS: Dichlormethanic extracts isolated from Nigellae damascenae semen and Nigellae damascenae herba were active on Leishmania promastigotes. CONCLUSIONS: Dichlormethanic extracts could be an alternative to the therapy based on pentamidine and amphotericin B.


Assuntos
Antiprotozoários/farmacologia , Leishmaniose/tratamento farmacológico , Nigella damascena/química , Extratos Vegetais/farmacologia , Plantas Medicinais , Animais , Topos Floridos , Humanos , Ranunculaceae/química , Sementes
14.
Chem Pharm Bull (Tokyo) ; 55(3): 488-91, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17329900

RESUMO

Four new triterpene glycosides, named nigellosides A, B, C, and D, were from the air-dried aerial parts of Nigella damascena L. (Ranunculaceae), and the structures were elucidated on the basis of spectroscopic data including 2D NMR spectra and chemical evidence. Their chemical structures have been characterized as 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl gypsogenin 28-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl gypsogenin 28-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl hederagenin 28-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, and 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl hederagenin 28-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester.


Assuntos
Glicosídeos/química , Nigella damascena/química , Triterpenos/química , Estrutura Molecular
15.
J Agric Food Chem ; 54(18): 6814-8, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16939344

RESUMO

Comparison of the volatile composition of fennel (Foeniculum vulgare Mill.) has been carried out using direct thermal desorption (DTD) coupled to gas chromatography-mass spectrometry. Forty-two wild fennel stem samples were collected in two different geographical areas of Central Spain. DTD allowed a high recovery of volatiles from small sample sizes without thermal decomposition. trans-Anethole was the main volatile compound for most cases, although a high variability was found among samples, showing clear phytochemical differences.


Assuntos
Nigella damascena/química , Derivados de Alilbenzenos , Anisóis/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Espanha , Volatilização
16.
Phytother Res ; 18(6): 468-70, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15287071

RESUMO

The essential oil, various extracts at different polarity, fractions, and pure compounds obtained from Nigella damascena plants and seeds were screened for biological activity. Antimicrobial tests showed the essential oil to be active only against Gram positive bacteria; among the extracts, the BuOH was active against Pseudomonas aeruginosa and Staphylococcus aureus. Molluscicidal activity was absent.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Moluscocidas/farmacologia , Nigella damascena , Fitoterapia , Óleos de Plantas/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Antifúngicos/administração & dosagem , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Moluscocidas/administração & dosagem , Moluscocidas/uso terapêutico , Óleos de Plantas/administração & dosagem , Óleos de Plantas/uso terapêutico , Caramujos/efeitos dos fármacos
17.
Phytother Res ; 16(5): 414-6, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12203258

RESUMO

We used the yeast estrogen screen (YES) containing a human estrogen receptor to evaluate the estrogenic activity of extracts obtained from Nigella damascena seeds. Alcohol extracts obtained by direct extraction of seeds showed a low estrogenic activity, while the alcohol extract obtained after extraction with solvents of increasing polarity showed a strong estrogenic activity. This suggests the presence in Nigella of polar components whose activity can be clearly demonstrated after previous elimination of interacting apolar components that may mask the activity of more polar components. The response of both alcohol fractions follow a bell-shaped curve indicating a concentration-dependent relationship.


Assuntos
Estrogênios não Esteroides/isolamento & purificação , Estrogênios não Esteroides/farmacologia , Nigella damascena/química , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/genética , Expressão Gênica , Genes Reporter , Genisteína/farmacologia , Humanos , Isoflavonas/farmacologia , Fitoestrógenos , Extratos Vegetais/farmacologia , Preparações de Plantas , Plantas Medicinais/química , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...